
Ordinary Differential Equations (Ode’s)

We shall consider some numerical schemes to solve initial-value problems
(Cauchy’s problems) written as: Find y = y(t) solution of{

y ′(t) = f (t, y(t)) t ∈ [t0,T ]

y(t0) = y0.
(1)

We assume y : [t0,T ] → R but can be generalized to y : [t0,T ] → Rd

In general f (t, y(t)) is a non-linear function describing the evolution in
time of y(t). The true solution y(t) of (1) evolves continuously in time,
and we want to follow it by a discrete approximation.

Both exact and discrete solution of (1) start from the same initial value y0
at t0. The discrete one takes finite steps ∆t, and after n steps it reaches a
value yn. We hope and expect that yn is close to the exact value
y(t0 + n∆t). We shall see that this may or may not happen.
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Numerical methods for Ode’s
Let us see some schemes to solve numerically (1). They are numerous,
and a first distinction is among 1-step methods and multi-step methods.
Let us see 1-step methods. They can all be derived in the following way.

Le t0, t1, · · · , tN = T be a set of points in [t0,T ]; as usual, for simplify

notation we take them equally spaced: (N given, we define ∆t =
T − t0

N
and we set t0, t1 = t0 +∆t, t2 = t1 +∆t, · · · , tN = T ).
At each step, (on each subinterval [tn, tn+1]) we integrate the differential
equations...

y ′(t) = f (t, y(t))

y(tn+1)− y(tn) =

∫ tn+1

tn

y ′(t)dt =

∫ tn+1

tn

f (t, y(t))dt. (∗)

Then, as y(t) in the interval [tn, tn+1] is unknown to us (and moreover, in
general, we are unable to compute the integral exactly), we use some
quadrature formula.
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y(tn+1)− y(tn) =

∫ tn+1

tn

y ′(t)dt =

∫ tn+1

tn

f (t, y(t))dt. (∗)

∫ tn+1

tn

f (t, y(t))dt ∼ quadrature formula.

Different choices of quadrature formulas give rise to different schemes.
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Examples of numerical schemes
Example 1 We consider first the quadrature formula∫ d

c
g(s)ds ≃ (d − c) g(c) (2)

that, indeed, is very poor (and is exact only for g = constant). Then∫ tn+1

tn

f (t, y(t))dt ≃ (tn+1 − tn)f (tn, y(tn)) n = 0, 1, 2, · · · (3)

Using (3) into y(tn+1)− y(tn) =
∫ tn+1

tn
y ′(t)dt =

∫ tn+1

tn
f (t, y(t))dt we get:

y(t1) ≃ y(t0) + ∆t f (t0, y(t0)) = y0 +∆t f (t0, y0) =: y1

y(t2) ≃ y(t1) + ∆t f (t1, y(t1)) ≃ y1 +∆t f (t1, y1) =: y2
...

y(tN) ≃ y(tN−1) + ∆t f (tN−1, y(tN−1)) ≃ yN−1 +∆t f (tN−1, yN−1) =: yN
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Examples of numerical schemes

It is clear from this that errors accumulate at each step and might produce
unexpected results. We will analyse the scheme later on. Let us write it in
a compact form:{

y0 given

yn+1 = yn +∆t f (tn, yn) n = 0, 1, · · · ,N − 1 (EE )

This is called EXPLICIT EULER method or FORWARD EULER method:
at each step, the value yn can be explicitly computed using values at the
previous steps. It is very simple and inexpensive but, as we shall see, there
is a “but”...
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Examples of numerical schemes
Example 2 This time we consider the quadrature formula∫ d

c
g(s)ds ≃ (d − c) g(d) (4)

that is also very poor and is exact only if g = constant, like the previous
one. However the resulting scheme will be very different. In fact, applying
it to our case we get∫ tn+1

tn

f (t, y(t))dt ≃ (tn+1 − tn)f (tn+1, y(tn+1)) n = 0, 1, 2, · · ·

that used into y(tn+1)− y(tn) =
∫ tn+1

tn
y ′(t)dt =

∫ tn+1

tn
f (t, y(t))dt gives

y(t1) ≃ y(t0) + ∆t f (t1, y(t1)) ≃ y0 +∆t f (t1, y1) =: y1

y(t2) ≃ y(t1) + ∆t f (t2, y(t2)) ≃ y1 +∆t f (t2, y2) =: y2
...

y(tN) ≃ y(tN−1) + ∆t f (tN , y(tN)) ≃ yN−1 +∆t f (tN , yN) =: yN

6 / 11



Examples of numerical schemes

The scheme becomes{
y0 given

yn+1 = yn +∆t f (tn+1, yn+1) n = 0, 1, · · · ,N − 1 (IE )

This is called IMPLICIT EULER method or BACKWARD EULER method.
Note that, at every time step, the unknown yn+1 in (IE ) appears both on
the left-hand side and in the right-hand side, and in order to perform the
step we must solve an equation in the unknown yn+1. Since f is in general
non-linear, at each step, to find yn we need to solve a non-linear equation
(for example, with Newton method). The method is obviously more
expensive than Explicit Euler.
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Examples of numerical schemes

Example 3 As a third example we consider the quadrature formula∫ d

c
g(s)ds ≃ (d − c)

(g(c) + g(d)

2

)
(5)

(trapezoidal rule) that is better than the previous ones since it is exact
whenever g is a polynomial of degree ≤ 1. Applying it to our case we get∫ tn+1

tn

f (t, y(t))dt ≃ (tn+1 − tn)

2

(
f (tn, y(tn)) + f (tn+1, y(tn+1))

)
∀n

The corresponding scheme becomesy0 given

yn+1 = yn +
∆t

2

(
f (tn, yn) + f (tn+1, yn+1)

)
n = 0, 1, · · · ,N − 1
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Examples of numerical schemes

y0 given

yn+1 = yn +
∆t

2

(
f (tn, yn) + f (tn+1, yn+1)

)
n = 0, 1, · · · ,N − 1

This is called CRANK-NICOLSON method. It is an implicit method (and
hence, as the previous Implicit Euler, expensive) but it has a good
accuracy, as we shall see.
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Examples of numerical schemes

Example 4 If we replace, in the Crank-Nicolson scheme, yn+1 with
y∗n+1 = yn +∆t f (tn, yn), that is, with the value predicted by Explicit
Euler, we get rid of the implicit part and obtain a new explicit method,
called HEUN method, which reads

y0 given

y∗n+1 = yn +∆t f (tn, yn) (HEUN)

yn+1 = yn +
∆t

2

(
f (tn, yn) + f (tn+1, y

∗
n+1)

)
n = 0, 1, · · · ,N − 1
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So we have two classes: explicit methods, and implicit methods.
In all cases we want the sequence {y0, y1, · · · , yN} to converge to the
sequence {y0, y(t1), · · · , y(T )}.

If, given a method, we can prove that

∃C > 0 such that max
n

|yn − y(tn)| ≤ C∆tp

with C independent of ∆t and p > 0, then we say that the method is
convergent, and the order of convergence is p (the bigger p, the faster the
convergence).
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